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We present a novel way of defining transmission coefficient of one spatial dimensional few interacting 
electrons system. The formalism is based on the probability interpretation of unitarity of physical 
scattering S-matrix. The relation of our formalism to the well-established method for describing the 
conducting properties of non-interacting systems, Landauer-Büttiker formula, is discussed. The transport 
properties of interacting two-electron system is also discussed as a specific example of our formalism.
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1. Introduction

Few particles interaction in one dimensional space (1D) has 
attracted a lot of attentions in various fields of physics both ex-
perimentally [1–6] and theoretically [7–14]. The increased interest 
in 1D system is largely motivated by recent advance on experi-
mental techniques. These new experimental techniques not only 
make studies of low-dimensional interacting particles experimen-
tally possible, but also provide opportunities to challenge our un-
derstanding of few-body systems. For instance, a peculiar bound 
state of atom pairs in an optical lattice with repulsive interaction 
between atoms has been observed recently [1]. Similar optical lat-
tice technique is also used to create ultracold strongly interacting 
atoms [6]. Single electron transistor and small quantum dots may 
be other exciting examples as experimental realizable few-body 
systems [4]. In such systems, the quantized energy levels and the 
Coulomb interaction are comparable, so that only a small num-
ber of electrons can be confined to the region with the size of 
orders of the Fermi wavelength. It is hence commonly assumed 
that the electrons interact with each other only when they are on 
the same quantum dot with contact interactions. Therefore, a set 
of nearly isolated small quantum dots may be considered as an 
ideal system for the studies of few-body system, such as transport 
properties [15].
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Quantum transport effect may play the crucial role in nanoscale 
semiconductor devices. The transport properties of non-interacting 
electrons are usually described by Landauer-Büttiker formula [16,
17], which establishes the relations between the conductance G of 
non-interacting electrons in a quasi-1D wire and transmission co-
efficient: G = e2

h

∑
n Tn , where Tn stand for the transmission prob-

ability coefficient for the incoming state in n-th channel. However, 
there is a firm belief that the behavior of electrons in 1D wire may 
be strongly affected by few-body interactions, and even a small 
perturbation can change the scattering pattern of particles signif-
icantly, see, e.g. Refs. [11–14]. For interacting systems, electron-
electron interaction may be incorporated within Landauer-Büttiker 
formula by including self-energy of electrons in a perturbation the-
ory approach [18,19]. This approach is more or less Hartree-Fock 
type approximation by assuming that electron-electron interac-
tions are elastic on average, so that single electron maintains the 
same momentum and all the inelastic effects are included in self-
energy of electron as virtual processes. Clearly, the approach may 
work well for many-body systems at larger scale, however, for 
few-body system, there are the cases that inelastic process may 
become essential [11–14]. In this letter, we aim to present a gen-
eral formalism for describing transport properties of interacting 
few-body system. The formalism is based on the physical transi-
tion S-matrix and unitarity relation of few-body system, hence, it 
is suitable not only for weakly interacting few-body system, such 
as electron-electron coulomb interaction, but also for strongly cou-
pled systems that cannot be easily handled by perturbation theory. 
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We also would like to point out that there have been other ap-
proaches which have been developed in the past to incorporating 
electron-electron, or electron-atom interactions in transport prop-
erties, such as, approach based on Master equations, [20,21].

2. S-matrix and wave packet prescription

In order to describe transport properties of a quantum con-
ductor, one of the key elements is to introduce properly defined 
transmission or reflection coefficients to reflect the probabilities 
for electrons tunneling though potential barriers. Normally, for the 
single electron in 1D, the task may be easily accomplished by 
study the scattering solutions of Schrödinger equation. The asymp-
totical wave function of single electron in 1D has quite a simple 
form with linear superposition of two components: forward- and 
backward-going plane waves. Although, it has been a well-known 
fact that the plane wave is not normalizable and doesn’t represent 
a physically realizable state. In the case of 1D single electron scat-
tering, it is still possible to interpret the coefficients of two plane 
waves as physical probability amplitudes. For example, assuming 
a particle incident from left that is described by a forward-going 
plane wave: eipx (p > 0), asymptotic wave function in forward and 
backward directions are given respectively by,

�(x, p)
x→+∞−→ [1 + it(p, p)] eipx,

x→−∞−→ eipx + it(−p, p)e−ipx, (1)

where t(k, p) represents the scattering amplitude of particle. The 
transmission and reflection probabilities are thus associated to 
the coefficients of transmitted wave in forward direction and 
reflected wave in backward direction: T = |1 + it(p, p)|2 and 
R= |it(−p, p)|2 respectively. Probability conservation yields the 
relation: T +R= 1. Unfortunately, for multiple particles, even in 
one spatial dimension, the physical interpretation of coefficients in 
front of asymptotic wave functions become problematic. The rea-
son is that the momenta among particles after scattering may be 
redistributed, and the coefficients that describe the momenta re-
distribution is not normalizable due to plane wave description of 
aymptotic states. Using two-electron scattering off atoms as a ex-
ample, with an incident plane wave of two electrons: eip·x , where 
p = (p1, p2) and x = (x1, x2) are 2D vectors that represent elec-
tron’s momenta and positions respectively, the asymptotic form of 
two electrons wave function in forward direction is

�(x,p)
θx→θp−→ [

2πδ(θx − θp) + 2it(px̂,p)
] ei(px− π

4 )

√
2π px

, (2)

where θx = tan−1 x2
x1

, θp = tan−1 p2
p1

, x̂ = x
x , x =

√
x2

1 + x2
2, and p =√

p2
1 + p2

2. t(p′, p) again represents the scattering amplitude of two 
electrons. The expression in Eq. (2) resembles the one electron case 
in forward direction, however, the divergent δ(θx − θp) term in 
coefficient of outgoing spherical wave prevents direct physical in-
terpretation of coefficient as probability amplitude. The divergence 
of δ(θx − θp) term is due to the fact that the angular component 
of plane wave which describes the momenta distribution among 
two electrons is not normalizable. Plane wave description violates 
Heisenberg uncertainty principle and is not suitable to be used to 
represent physical states whose positions and momenta are both 
well determined.

On the other hand, it has been known that in single electron 
scattering case given in Eq. (1), the coefficients of transmitted and 
reflected waves can be identified as reduced S-matrix elements 
after removing energy conservation δ-function constraint,
S(k, p) = δk̂,p̂ + it(k, p), (3)

where k̂ = k
|p| , p̂ = p

|p| and |k| = |p|. So that T = |S(p, p)|2 and 
R = |S(−p, p)|2, and probability conservation relation, T +R = 1, 
is equivalent to unitarity relation of S-matrix:∑
k=±p

|S(k, p)|2 = 1. (4)

This connection is due to the fact that the transport behaviors 
are determined by scattering properties of electrons in a conduc-
tor. Similarly, in case of two electrons, the coefficient of outgoing 
spherical waves, see Eq. (2), can also be identified as reduced 
S-matrix element,

S(k,p) = 2πδ(θk − δp) + 2it(k,p), (5)

which satisfies unitarity relation,∮
dθk

2π
S∗(k,p)S(k,p′) = 2πδ(θp − θp′). (6)

As already mentioned previously, in multiple particles cases, be-
cause of normalization issue of plane wave description of asymp-
totic states, the unitarity relation of S-matrix in Eq. (6) clearly can-
not be interpreted directly as probability conservation relation. In 
fact, according to quantum scattering theory [22], the unitarity re-
lation of S-matrix satisfies the probability conservation condition, 
only when S-matrix element indeed represents the physical prob-
ability amplitude for the occurrence of transition. The S-matrix 
in Eq. (3) clearly doesn’t represent the physical probability ampli-
tude. As will be made clear later on, when the physical probability 
amplitude condition is met, the transmission and reflection coef-
ficients then may be introduced based on the physical probability 
interpretation of unitarity relation.

Above mentioned difficulty can be remedied by introducing 
wave packet prescription of physical asymptotic states. The wave 
packet prescription is only required for the incident asymptotic 
state, since the outgoing states will be averaged out for physi-
cal transition process. Moreover, because only reduced S-matrix 
elements after removing energy conservation constraint are used 
for the transport properties, it is sufficient to introduce the wave 
packet of multiple particles that only describes the momenta dis-
tribution among particles corresponding to a fixed total energy. 
Using again two electrons case as a example, the physical wave 
function with a incoming wave packet of two electrons may be 
defined by

�(x,p0) =
∮

dθp

2π
�(x,p)�(θp, θp0), (7)

where the function �(θp, θp0 ) describes the angular distribution 
of incoming wave packet peaked around a fixed angle θp0 , and is 
normalized according to relation,∮

dθp

2π

∣∣�(θp, θp0)
∣∣2 = 1. (8)

Hence, the physical S-matrix element is related to plane wave 
based S-matrix element by,

S(θk, θp0) =
∮

dθp

2π
S(k,p)�(θp, θp0). (9)

The physical S-matrix element in Eq. (9) and the unitarity relation 
in Eq. (6) together yields a well-defined probability conservation 
relation,∮

dθk |S(θk, θp0)|2 = 1. (10)

2π
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Therefore, |S(θk, θp0 )|2 now can be used to represent the prob-
ability of transition from initial momenta configurations peak at 
θp0 ∈ [0, π2 ] into final configuration θk . The transmission coefficient 
may be introduced by considering all configurations scattered into 
forward direction,

T =
π
2∫

0

dθk

2π
|S(θk, θp0)|2, (11)

and based on the probability conservation, the reflection coefficient 
thus is simply given by R = 1 − T .

The arguments and wave packet prescription can be general-
ized to multiple electrons as well. The plane wave based unitarity 
relation for D electrons has the similar form as in Eq. (6),
∮

dk̂

(2π)D−1 S†(k,p)S(k,p′) = (2π)D−1δD−1(p̂ − p̂′), (12)

where S(k, p) stands for the plane wave based reduced D-electron 
scattering S-matrix. The incoming and outgoing electron’s mo-
menta are represented by D-dimensional space vectors, p =
(p1, · · · , pD) and k = (k1, · · · , kD), and they are constrained by 
energy conservation: k2 = p2. Hence, unit vectors in D − 1 dimen-

sional space, p̂ = p̂
p and k̂ = k̂

p , may be used to define incoming 
and outgoing electron’s internal momenta distribution, which re-
sembles the angular distribution in D −1 dimensional space math-
ematically. By introducing a normalized angular function �(p̂, ̂p0)

to describe the wave packet of incoming particles, the transmis-
sion coefficient of D-electron may be defined again based on 
D-electron probability conservation relation,
∮

dk̂

(2π)D−1 |S(k̂, p̂0)|2 = 1, (13)

where physical S-matrix element of D-electrons is given by

S(k̂, p̂0) =
∮

dk̂

(2π)D−1 S(k,p)�(p̂, p̂0). (14)

3. Two electrons interaction in a crystal

In this section, as a specific example of our formalism, we use 
a simple solvable model to demonstrate some interesting features 
and transport properties of two interacting electrons in crystal. The 
dynamics of our model is given by Hamiltonian,

Ĥ = T̂ + V (x1) + V (x2) + U (x), (15)

where T̂ = − 1
2m

∑
i=1,2

d2

dx2
i

is kinetic energy of two electrons. Two 
types of interactions are considered in this model: (1) V (xi) de-
scribes the pair-wise interaction between i-th electron and atoms 
in crystal, and (2) U (x) represent the three-body interaction in-
volving both electrons and atoms in crystal. U -type three-body 
potential may be approximated by contact interactions,

U (x) =
N−1∑
α=0

U0δ(x1 − aα)δ(x2 − aα), (16)

where aα are the locations of atoms and N denotes the total num-
ber of atoms, hence U -type potential only contribute when both 
electrons meet at same atom. The spin effect has been neglected 
in this model, and solutions for spin triplet and singlet may be 
achieved by symmetrization of wave function. The scattering solu-
tion of Schorödinger equation for two electrons system may be ob-
tained by considering Lippmann-Schwinger equation, see e.g. [23]. 
The S-matrix may be introduced by studying the asymptotic wave 
function of two electrons system. In our case, asymptotic wave 
function is given by combination of both plane waves and spheri-
cal wave [23],

�(x,p) →
[

eip1x1 + it(p1x̂1, p1)eip1|x1|]

×
[

eip2x2 + it(p2 x̂2, p2)eip2|x2|]

+ 2iTU (px̂,p)
ei(px− π

4 )

√
2π px

, (17)

where x̂i = xi|xi | , and t(pi x̂i, pi) denotes for the scattering ampli-
tude of single electron. The three-body scattering amplitude, TU , 
is given by

TU (k,p) = −m

2

N−1∑
α,β=0

φ∗(aα,k)
[
D−1]

α,β
φ(aβ,p), (18)

where aα = (aα, aα), and D matrix is defined as

Dα,β = 1

U0
δα,β − G(aα,aβ). (19)

The wave function φ(x, p) and Green’s function G(x, x′) satisfy 
equations,[

T̂ + V (x1) + V (x2)
]
φ(x,p) = Eφ(x,p), (20)

and[
E − T̂ − V (x1) − V (x2)

]
G(x,x′) = δ(x − x′), (21)

respectively.
The plane waves in Eq. (17) are the result of pair-wise 

V -potentials between electrons and atoms in crystal. The coef-
ficient of spherical wave, TU , stands for the “true” three-body 
U -type interaction when both electrons and atoms are involved 
in interaction. After removing energy conservation constraint, the 
reduced plane wave basis S-matrix are given by

S(k,p) =
π±θp∑
δ=±θp

2πδ(θk − δ)sV (k,p) + 2iTU (k,p), (22)

where θk = tan−1 k2
k1

, θp = tan−1 p2
p1

, and

sV (k,p) =
[
δk̂1,p̂1

+ it(k1, p1)
][

δk̂2,p̂2
+ it(k2, p2)

]
, (23)

stands for the reduced S-matrix with only the presence of 
V -potentials, where k̂i = ki|pi | and p̂i = pi|pi | . The reduced plane wave 
basis S-matrix satisfies unitarity relation given in Eq. (6). A simple 
choice of angular distribution function �(θp, θp0) may be a gaus-
sian function,

�(θp, θp0) = (2π)
1
4√

τ
e
− (θ−θp0 )2

4τ2 , (24)

where τ is a small parameter to control the width of peak of wave 
packet. Hence the physical S-matrix that describes the physical 
transition probability of two electrons is given by

S(θk, θp0) =
π±θk∑

θp=±θk

sV (k,p)�(θp, θp0)

+ 2i

∮
dθp

2π
TU (k,p)�(θp, θp0), (25)
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and the transmission coefficient defined by Eq. (11) represents the 
probability of finding both two electrons scattered into forward di-
rection.

3.1. U = 0 limit

In the case of U = 0, the TU (k, p) → 0, the unitarity relation of 
physical S-matrix in Eq. (10) is thus reduced to a simple form,
∑

ki=±pi

|sV (k,p)|2 = 1, (26)

this is exactly what we expected for non-interacting two electrons. 
Assuming (p1 > 0, p2 > 0), the transmission and reflection coeffi-
cients may be introduced by

T = |sV (p1, p2; p1, p2)|2 ,

R = |sV (−p1, p2; p1, p2)|2 + |sV (p1,−p2; p1, p2)|2
+ |sV (−p1,−p2; p1, p2)|2 . (27)

Hence, T does indeed describe the probability of finding both 
electrons in forward direction after scattering. The complication in 
reflection coefficient of two electrons are due to the fact that two 
electrons wave function now has four independent plane waves: 
e±ip1x1 e±ip2x2 , in addition to both electrons in forward direction, 
which create three other scenarios: (i) sV (−p1, p2; p1, p2) de-
scribe particle-2 moves forward and particle-1 is scattered back-
ward; (ii) similarly, sV (p1,−p2; p1, p2) is related to particle-1 
moves forward and particle-2 is scattered backward; (iii) and 
sV (−p1,−p2; p1, p2) is associate with both particles are scattered 
backward.

3.2. V = 0 limit

At another extreme limit, as V → 0, sV (k,p) → δk̂1,p̂1
δk̂2,p̂2

, 
φ(x,p) → eip·x , and

G(x,x′) → −m

2
iH (1)

0 (p|x − x′|). (28)

The physical S-matrix now has a form,

S(θk, θp0) = �(θk, θp0) + 2i

∮
dθp

2π
TU (k,p)�(θp, θp0), (29)

where

TU (k,p) = −m

2

N−1∑
α,β=0

e−ik·aα
[
D−1]

α,β
eip·aβ , (30)

and

Dα,β = 1

U0
δα,β + m

2
iH (1)

0 (p|aα − aβ |). (31)

The diagonal matrix elements Dα,α present another difficulty due 
to the ultraviolet divergence of Hankel function at origin,

H (1)
0 (pr)

r→0→ 1 + 2i

π

(
γE + ln

p



)
,  = 2

r
, (32)

where  is served as ultraviolet regulator. Ultimately, the physical 
result should not depend on the choice or regulator and it will be 
set to  → ∞. The ultraviolet divergence may be dealt with stan-
dard renormalization procedure [24,25]. The ultraviolet divergence 
in Hankel function at origin may be absorbed by bare coupling 
strength U0, a scale dependent running renormalized coupling 
strength is hence introduced by
1

U R(μ)
= 1

U0
− m

π
(γE + ln

μ


), (33)

where μ stands for the renormalization scale, and U R (μ) is the 
physical coupling strength measured at scale μ. The diagonal ma-
trix element D is now given by

Dα,α = m

2
i + 1

U R(μ)
− m

π
ln

p

μ
. (34)

The physical observable, D, shouldn’t depend on the renormaliza-
tion scale μ,

d

dμ
Dα,α = 0. (35)

Hence it yields a equation for running coupling strength,

dU R(μ)

d lnμ
= mU 2

R(μ)

π
, (36)

and the solution of running coupling strength is given by

1

mU R(μ)
= 1

mU B
R

− 1

π
ln

μ

μB
, (37)

where the initial condition of physical observable U B
R = U R(μB) is 

coupling strength measured at scale μB . The scale dependence in 
U R(μ) and m

π ln p
μ in Eq. (34) cancel out, so ultimately, physical 

observable, D, indeed doesn’t depend on the choice of renormal-
ization scale μ:

Dα,α = m

2
i + 1

U B
R

− m

π
ln

p

μB
. (38)

For the weak coupling (U B
R � m−1), the D matrix may be ap-

proximated by only diagonal elements: Dα,α ∼ δα,β
1

U B
R

, hence,

TU (k,p) → −
1
2

i
2 + 1

mU B
R

− 1
π ln p

μB

e
i pL�√

2

e
i pL�√

2N

sin pL�√
2

sin pL�√
2N

, (39)

where � ≡ cos(θp − π
4 ) − cos(θk − π

4 ). We have also assumed 
that all atoms are separated with even distance: aα = L

N α, α =
0, · · · , N − 1, where L stands for the length of crystal. The trans-
mission coefficient, in case of a shape peaked wave packet (τ → 0), 
is now given by

T → 1 − 2τ

(2π)
3
2

1
1
4 + ( 1

mU B
R

− 1
π ln p

μB
)2

2π∫
π
2

sin2 pL�√
2

sin2 pL�√
2N

dθk. (40)

One of interesting feature in two interacting electrons case is that 
due to the U -type three-body interaction, the integrand expression 

in Eq. (40), 
sin2 pL�√

2

sin2 pL�√
2N

, shows the interference pattern and resembles 

to intensity distribution from an ideal grating with N slits in optics 
or the resistance of one-dimensional chains in Kronig-Penny-like 
models (see, e.g. [26]). In contrast, in the case of the single elec-
tron interacting with N numbers of contact interactions, even at 
weak coupling limit, the phase factors in forward scattering ampli-
tude all cancel out. The transmission coefficient for single electron 
is independent of phase factors: T = 1 − N2 m2U 2

0
p2 , and shows no 

interference pattern.
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4. Discussion and summary

In order to see the resemblance of multiple channels Landauer-
Büttiker formula and multiple particles S-matrix formalism, let’s 
consider the case of single electron traveling in a quasi-1D wave 
guide along z-direction. The potential barrier is placed at center of 
wave guide, and the motion of electron in transverse direction is 
confined in a narrow tube. Hence, the energy spectra in transverse 
direction is discretized, the wave function is given by the product 
of a plane wave in z-direction, eipn z , and bound state wave func-
tion in transverse direction, �n(x, y), where n refers to the n-th 
energy state, εn , in transverse direction, and pn = √

2m(E − εn). 
Assuming initial incident electron is in n-th eigenstate, thus, the 
scattered wave function of electron in forward direction is given 
by

�n(x, E) →
∑

n′
Sn,n′�n′(x, y)eipn′ z, (41)

where Sn,n′ is scattering S-matrix element between n-th and n′-th 
channels, and satisfies unitarity relation: 

∑
n′ |Sn,n′ |2 = 1. Since 

transverse wave function, �n(x, y), is also well normalized accord-
ing to∫

dxdy�∗
n′(x, y)�n(x, y) = δn,n′ , (42)

the coefficient of plane wave in z-direction, Sn,n′�n′ (x, y), may 
still be used to describe probability of physical transition process. 
Hence, the transmission coefficient in initial channel-n may be de-
fined as net result of coefficient square,

Tn =
∫

dxdy|
∑

n′
Sn,n′�n′(x, y)|2 =

∑
n′

|Sn,n′ |2. (43)

In the case of two electrons, the situation is somehow similar, 
the two electrons wave function in forward direction is now de-

scribed by outgoing spherical waves, ei(px− π
4 )√

2π px
, propagating in radial 

direction, and the angular dependent physical S-matrix element,

�(x,p0)
θx→θp0−→ S(θx, θp0)

ei(px− π
4 )

√
2π px

. (44)

If each possible configuration of allowed momenta distribution 
among particles is labeled as a single channel, in multiple par-
ticles case, there are infinite channels. The scattering of multiple 
particles may be treated as a continuously distributed multiple-
channel problem. Physical S-matrix element square, |S(θx, θp0 )|2, 
hence describe the transition probability between channel-θx and 
channel-θp0 . The transmission coefficient in initial channel-θp0 is 
thus given by net result of all forward transitions,

Tθp0
=

π
2∫

0

dθx

2π
|S(θx, θp0)|2. (45)
In summary, the transport properties of few-electron system is 
normally complicated by some new features due to multiple par-
ticles interaction effect, such as interference and diffraction. The 
proper approach of introducing transmission and reflection coeffi-
cient of few-electron system is discussed in present work based on 
the probability interpretation of physical unitarity relation of scat-
tering S-matrix. The normalization paradox of unitarity relation 
is remedied by the wave packet description of incident physical 
states.
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